Work on ATA-7 began late in 2001 and is still underway at the present. As with the earlier ATA standards, ATA-7 is built on the previous standard (ATA-6), with some additions. The primary addition in ATA-7 is another transfer mode, called UDMA Mode 6, that allows for data transfers up to 133MBps.

As with the UDMA Mode 5 (100MBps) and UDMA Mode 4 (66MBps), the use of an 80-conductor cable is required. Slower speeds don't require the 80-conductor cable, although they will work and are always preferred over the 40-conductor type.

Note that although the throughput has been increased from the drive controller (on the drive) to the motherboard via the UDMA modes, most ATA drives—even those capable of UDMA Mode 6 (133MBps) from the drive to the motherboard—still have an average maximum sustained transfer rate while reading data of under 60MBps.

This means that although newer ATA drives can transfer at speeds up to 133MBps from the circuit board on the drive to the motherboard, data from the drive media (platters) through the heads to the circuit board on the drive moves at less than half that rate.

For that reason, running a drive capable of UDMA Mode 6 (133MBps) on a motherboard capable of only UDMA Mode 5 (100MBps) really doesn't slow things down much, if at all. Likewise, upgrading your ATA host adapter from one that does 100MBps to one that can do 133MBps won't help much if your drive can read data off the disk platters at only half that speed.

Always remember that the media transfer rate is far more important than the interface transfer rate when selecting a drive because the media transfer rate is the limiting factor. ATA-7 is still a work in progress, so further changes might come. As a historical note, ATA-7 will likely be the last revision of the venerable Parallel ATA standard.

ATA is evolving into Serial ATA, which is covered later in this chapter. Because of the small performance differential between ATA-6 and ATA-7, many chipset and motherboard manufacturers are skipping over ATA-7 and instead moving directly to Serial ATA, which is both faster and simpler than ATA-7.