Pentium Generation Processor

First-Generation Pentium Processor

The Pentium has been offered in three basic designs, each with several versions. The first-generation design, which is no longer available, came in 60MHz and 66MHz processor speeds. This design used a 273-pin PGA form factor and ran on 5V power. In this design, the processor ran at the same speed as the motherboard—in other words, a 1x clock was used.

The first-generation Pentium was created through an 0.8-micron BiCMOS process. Unfortunately, this process, combined with the 3.1 million transistor count, resulted in a die that was overly large and complicated to manufacture. As a result, reduced yields kept the chip in short supply; Intel could not make them fast enough.

The 0.8-micron process was criticized by other manufacturers, including Motorola and IBM, which had been using 0.6-micron technology for their most advanced chips.

The huge die and 5V operating voltage caused the 66MHz versions to consume up to an incredible 3.2 amps or 16 watts of power, resulting in a tremendous amount of heat and problems in some systems that did not employ conservative design techniques.

Fortunately, adding a fan to the processor solved most cooling problems, as long as the fan kept running. Much of the criticism leveled at Intel for the first-generation Pentium was justified.

Some people realized that the first-generation design was just that; they knew that new Pentium versions, made in a more advanced manufacturing process, were coming. Many of those people advised against purchasing any Pentium system until the second-generation version became available.

Those who purchased first-generation Pentiums still had a way out, however. As with previous 486 systems, Intel released OverDrive upgrade chips that effectively doubled the processor speed of the Pentium 60 or 66. These are a single-chip upgrade, meaning they replace the existing CPU.

Because subsequent Pentiums are incompatible with the Pentium 60/66 Socket 4 arrangement, these OverDrive chips and comparable upgrades available from some third-party sources were the only way to upgrade an existing first-generation Pentium without replacing the motherboard.

Generally, it was better to consider a complete motherboard replacement, which would accept a newer design processor that would potentially be many times faster, than to upgrade using just an OverDrive processor, that might only be twice as fast.

Second-Generation Pentium Processor

Intel announced the second-generation Pentium on March 7, 1994. This new processor was introduced in 90MHz and 100MHz versions, with a 75MHz version not far behind. Eventually, 120MHz, 133MHz, 150MHz, 166MHz, and 200MHz versions were also introduced.

The second-generation Pentium uses 0.6-micron (75/90/100MHz) BiCMOS technology to shrink the die and reduce power consumption. The newer, faster 120MHz (and higher) second-generation versions incorporate an even smaller die built on a 0.35-micron BiCMOS process.

These smaller dies are not changed from the 0.6-micron versions; they are basically a photographic reduction of the P54C die. Additionally, these new processors run on 3.3V power. The 100MHz version consumes a maximum of 3.25 amps of 3.3V power, which equals only 10.725 watts.

Further up the scale, the 150MHz chip uses 3.5 amps of 3.3V power (11.6 watts); the 166MHz unit draws 4.4 amps (14.5 watts); and the 200MHz processor uses 4.7 amps (15.5 watts). The second-generation Pentium processors come in a 296-pin SPGA form factor that is physically incompatible with the first-generation versions.

The only way to upgrade from the first generation to the second is to replace the motherboard. The second-generation Pentium processors also have 3.3 million transistors—more than the earlier chips. The extra transistors exist because additional clock-control SL enhancements were added, along with an on-chip advanced programmable interrupt controller (APIC) and dual-processor interface.

The APIC and dual-processor interfaces are responsible for orchestrating dual-processor configurations in which two second-generation Pentium chips can process on the same motherboard simultaneously. Many of the Pentium motherboards designed for file servers come with dual Socket 7 specification sockets, which fully support the multiprocessing capability of the new chips.

Software support for what usually is called symmetric multiprocessing (SMP) is being integrated into operating systems such as Windows NT and OS/2. The second-generation Pentium processors use clock-multiplier circuitry to run the processor at speeds faster than the bus.

The 150MHz Pentium processor, for example, can run at 2.5 times the bus frequency, which normally is 60MHz. The 200MHz Pentium processor can run at a 3x clock in a system using a 66MHz bus speed. Virtually all Pentium motherboards had three speed settings: 50MHz, 60MHz, and 66MHz.

Pentium chips were available with a variety of internal clock multipliers that caused the processor to operate at various multiples of these motherboard speeds. Not all chips support all the bus frequency (BF) pins or combinations of settings.

In other words, some of the Pentium processors operate only at specific combinations of these settings or might even be fixed at one particular setting. Many of the later Pentium motherboards included jumpers or switches that enabled you to control the BF pins and, therefore, alter the clock-multiplier ratio within the chip.

In theory, you could run a 75MHz-rated Pentium chip at 133MHz by changing jumpers on the motherboard. This is called overclocking. What Intel has done to discourage overclockers in its most recent Pentiums is discussed in "Processor Manufacturing". Intel also offered a single-chip OverDrive upgrade for second-generation Pentiums.

These OverDrive chips are fixed at a 3x multiplier; they replace the existing Socket 5 or 7 CPU, increase processor speed up to 200MHz (with a 66MHz motherboard speed), and add MMX capability. Simply stated, a Pentium 100, 133, or 166 system equipped with the OverDrive chip has a processor speed of 200MHz.

Perhaps the best feature of these Pentium OverDrive chips is that they incorporate MMX technology. MMX provides greatly enhanced performance while running the multimedia applications that are so popular today. If you have a Socket 7 motherboard, you might not need the special OverDrive versions of the Pentium processor that have built-in voltage regulators.

Instead, you can purchase a standard Pentium or Pentium-compatible chip and replace the existing processor with it. You must be sure to set the multiplier and voltage settings so that they are correct for the new processor.

Pentium-MMX Processors

A third generation of Pentium processors (codenamed P55C) was released in January 1997, and incorporates what Intel calls MMX technology into the second-generation Pentium design. These Pentium-MMX processors are available in clock rates of 66/166MHz, 66/200MHz, and 66/233MHz and in a mobile-only version, which is 66/266MHz.


The MMX processors have a lot in common with other second-generation Pentiums, including superscalar architecture, multiprocessor support, on-chip local APIC controller, and power-management features. New features include a pipelined MMX unit, 16KB code, write-back cache (versus 8KB in earlier Pentiums), and 4.5 million transistors.

Pentium-MMX chips are produced on an enhanced 0.35-micron CMOS silicon process that allows for a lower 2.8V voltage level. The newer mobile 233MHz and 266MHz processors are built on a 0.25-micron process and run on only 1.8V. With this newer technology, the 266 processor actually uses less power than the non-MMX 133.

To use the Pentium-MMX, the motherboard must be capable of supplying the lower (2.8V or less) voltage these processors use. To enable a more universal motherboard solution with respect to these changing voltages, Intel has come up with the Socket 7 with VRM.

The VRM is a socketed module that plugs in next to the processor and supplies the correct voltage. Because the module is easily replaced, reconfiguring a motherboard to support any of the voltages required by the newer Pentium processors is easy. Of course, lower voltage is nice, but MMX is what this chip is really all about.

MMX incorporates a process Intel calls single instruction multiple data (SIMD), which enables one instruction to perform the same function on many pieces of data. Fifty-seven new instructions designed specifically to handle video, audio, and graphics data have been added to the chip.

To add maximum upgradeability to the MMX Pentiums, a Pentium motherboard needs 321-pin processor sockets that fully meet the Intel Socket 7 specification. These also would include the VRM socket. If you have dual sockets, you can add a second Pentium processor to take advantage of SMP support in operating systems that support this feature.