Processor Speeds V.s. Motherboard Speed

Another confusing factor when comparing processor performance is that virtually all modern processors since the 486DX2 run at some multiple of the motherboard speed.

For example, a Pentium 4 2.53GHz chip runs at a multiple of 19/4 (4.75x) times the motherboard speed of 533MHz, whereas an AMD Athlon XP 2800+ using the latest Barton core (2.083GHz) runs at 75/12 (6.25x) times the motherboard speed of 33MHz.

Up until early 1998, most motherboards ran at 66MHz or less. Starting in April 1998, Intel released both processors and motherboard chipsets designed to run at 100MHz. By late 1999, chipsets and motherboards running at 133MHz became available to support the newer Pentium III processors.

At that time, AMD Athlon motherboards and chipsets were introduced running a 100MHz clock but using a double transfer technique for an effective 200MHz data rate between the Athlon processor and the main chipset North Bridge chip.

In 2000 and 2001, processor bus speeds advanced further to 266MHz for the AMD Athlon and Intel Itanium and 400MHz to 533MHz for the Pentium 4. In 2002, the AMD Athlon XP processors began to support a processor bus speed of 333MHz. In 2003, Intel introduced the first Pentium 4 processors that supported a processor bus speed of 800MHz.

Typically, the speed of the CPU bus is selected to match whatever memory types Intel and AMD want to support. Most of the modern CPU bus speeds are based on the speeds of the CPU as well as the available SDRAM, DDR SDRAM, and RDRAM memory. Note that the processor bus speed of Pentium 4 processors is not directly equivalent to a particular memory speed.

You can set the motherboard speed and multiplier setting via jumpers or another configuration mechanism (such as BIOS setup) on the motherboard. Modern systems use a variable-frequency synthesizer circuit usually found in the main motherboard chipset to control the motherboard and CPU speed.

Most Pentium motherboards have three or four speed settings. The processors used today are available in a variety of versions that run at different frequencies based on a given motherboard speed. For example, most of the Pentium chips run at a speed that is some multiple of the true motherboard speed.

If all other variables are equal—including the type of processor, the number of wait states (empty cycles) added to different types of memory accesses, and the width of the data bus—you can compare two systems by their respective clock rates.

However, the construction and design of the memory controller (contained in the motherboard chipset) as well as the type and amount of memory installed can have an enormous effect on a system's final execution speed. In building a processor, a manufacturer tests it at various speeds, temperatures, and pressures.

After the processor is tested, it receives a stamp indicating the maximum safe speed at which the unit will operate under the wide variation of temperatures and pressures encountered in normal operation. These ratings are clearly marked on the processor package.

Cyrix Processor Speeds

Cyrix/IBM/VIA 6x86 processors—which were designed to compete with the Intel Pentium, early Pentium II, and AMD K5 and K6 series of processors—used a PR (performance rating) scale that was not equal to the true clock speed in megahertz.

For example, the Cyrix 6x86MX/MII-PR366 actually runs at only 250MHz (2.5x100MHz). This is a little misleading—you must set up the motherboard as if a 250MHz processor were being installed, instead of the 366MHz you might suspect. Unfortunately, this led people to believe these systems were faster than they really were.

Note that a given P-Rating can mean several different actual CPU speeds—for example, a Cyrix 6x86MX-PR200 might actually be running at 150MHz, 165MHz, 166MHz, or 180MHz, but not at 200MHz.

This P-Rating was supposed to indicate speed in relation to an Intel Pentium processor, but the processor being compared to in this case is the original non-MMX, small L1 cache version running on an older motherboard platform with an older chipset and slower technology memory.

The P-Rating did not compare well against the Celeron, Pentium II, or Pentium III processors. In other words, the MII-PR366 really ran at only 250MHz and compared well against Intel processors running at closer to that speed, making the ratings somewhat misleading.

AMD Processor Speeds

AMD's Athlon XP processors are excellent performers and have several notable features, but they unfortunately bring with them a resurrection of the infamous Cyrix/AMD performance rating.

This is a simulated MHz number that does not indicate the actual speed of the chip but instead indicates an estimate of the relative MHz of a first-generation Intel Pentium 4 that would be approximately equal in performance. If this sounds confusing, that's because it is!

AMD's performance tests show that the 1.8GHz Athlon runs at the same "performance level" as a theoretical 2.2GHz Pentium 4, so it calls the chip an Athlon XP 2200+, assigning the 2200+ number as a designation of performance relative to Pentium 4 MHz.

This type of marketing, where a chip is assigned a number indicating a relative—rather than a true—speed rating, has been tried before with limited success. In some cases it left a bad impression with customers who felt that they were deceived when they found out the true MHz rating of the chips and systems they had purchased.

I liken the performance numbers AMD is using to the wind chill factor often used by weather reporters in the winter. There is of course the REAL temperature, and then there is the so-called wind chill factor, which is an estimated rating of how cold it "feels."

The model numbers AMD uses with the new Athlon XP are like a "speed factor," which is supposed to tell you how fast the processor "feels" compared to a Pentium 4. (However, AMD does insist its performance rating numbers are not meant to be directly associated with the Pentium 4.)

AMD's marketing problem is real: How do you market a chip that performs faster than your rival when both are running at the same clock speed? An AMD Athlon XP with an actual clock speed of 2GH is significantly faster than a 2GHz Pentium 4 and in fact performs about equal to a 2.4GHz Pentium 4 (hence, AMD calls this model the Athlon XP 2400+).

This apparent disparity in performance is because the P4 uses a different architecture that utilizes a deeper instruction pipeline with more stages. The Pentium 4 has a 20-stage pipeline, which compares to an 11-stage pipeline in the Athlon and a 10-stage pipeline in the Pentium III/Celeron.

A deeper pipeline effectively breaks instructions down into smaller micro-steps, which allows overall higher clock rates to be achieved using the same silicon technology. However, it also means that overall fewer instructions can be executed in a single cycle as compared with the Athlon (or Pentium III).

This is because, if a branch prediction or speculative execution step fails (which happens fairly frequently inside the processor as it attempts to line up instructions in advance), the entire pipeline has to be flushed and refilled.

Thus, if you compared an Athlon to a Pentium III to a Pentium 4 all running at the same clock speed, the Athlon and Pentium III would both beat the Pentium 4 running typical benchmarks because they would execute more instructions in the same number of cycles. Although this would sound bad for the Pentium 4, it really isn't.

In fact, it is part of the design. Intel's reasoning is that even though the deeper pipeline might be 30% less efficient overall, it more than makes up for this by allowing at least 50% greater clock speeds than the Athlon or Pentium III with shorter pipelines.

The deeper 20-stage pipeline in the P4 architecture enables significantly higher clock speeds to be achieved using the same silicon die process as other chips. As an example, the Athlon XP and Pentium 4 were originally made using the same 0.18-micron process (which describes the line width of components etched on the chips).

The P4's 20-stage pipeline enables the 0.18-micron die process to result in chips running up to 2.0GHz, whereas the same process achieves only 1.73GHz in the 11-stage Athlon XP and only 1.13GHz in the 10-stage Pentium III/Celeron.

Using the newer 0.13-micron process, the Pentium 4 currently runs up to 3.06GHz and the Athlon XP tops out at 2.083GHz (3000+ model) in the same introduction timeframe. Even though the Pentium 4 executes fewer instructions in each cycle, the overall higher cycling speeds make up for the loss of efficiency.

So, for the initial crop of Athlon XP and Pentium 4 processors, in the end, higher clock speed versus more efficient processing effectively cancel each other out.

Unfortunately, the P-rating becomes very confusing for higher speeds because for speeds over 2GHz, Intel has adopted a 0.13-micron (smaller) die, doubled the L2 cache from 256KB to 512KB, and in some models increased the CPU bus speed from 400MHz to 533MHz.

The P-rating system compares only to the OLDER (slower) 0.18-micron Pentium 4 design and does not quite match up numerically to the newer 0.13-micron Pentium 4 chips, especially those with the 533MHz processor bus. The problem is AMD has created a comparative rating scale but is comparing against a moving target.

Although the latest AMD Athlon XPs are built on a .13-micron process (Thoroughbred and Barton cores) and now offer 512KB of full-speed on-die L2 cache (Barton core), the rating system names for the latest Barton-core Athlon XP processors—2800+, 3000+, and 3200+—don't really compare well to 2.8GHz, 3.06GHz, and 3.2GHz Pentium 4 processors.

And there is another problem: The relative comparisons change depending on which benchmarks you run. As applications and operating system software are rewritten to understand the deeper 20-stage pipeline of the Pentium 4 (and that is already happening), fewer internal processor prediction and speculation mistakes will be made, and thus the pipeline will be flushed and refilled fewer times.

Overall instruction efficiency will rise for the Pentium 4, meaning newer software optimized for the deeper pipeline will actually run faster on the same Pentium 4 processor. This can have the effect of further tainting the relative comparisons AMD is making now, potentially rendering them inaccurate in the future.

In spite of this, AMD's new 64-bit Athlon 64 desktop processors will still use a similar naming convention, although the 64-bit Opteron server processor does not. There's no question that AMD's claims about its Athlon XP processors are true: They do beat less-efficient processors that run "faster" in terms of clock speed.

The only problem is that the design of the Pentium 4 allows significantly higher clock speeds to be achieved using the same manufacturing process. Many systems display the clock speed of the processor during the initial boot cycle. Windows XP also displays the CPU clock speed on the General tab of the System Properties sheet.

AMD would prefer that systems no longer indicate processor speed directly. In fact, AMD does not recommend or validate motherboards using the Athlon XP if they display the processor's actual clock speed. In the future, the curious will need to use a third-party program such as SiSoft Sandra or the Intel Frequency ID Utility to find out the true clock speed of their processors after it is installed.