Data and Message Confidentiality
The data and message confidentiality service can be used when the secrecy of information is necessary. As a front line protection, this service may incorporate mechanisms associated with the access control service, but can also rely on encryption to provide further secrecy protection.
Encrypting information converts it to an unintelligible form called ciphertext, decrypting converts the information back to its original form. Sensitive information can be stored in the encrypted, ciphertext, form.
In this way if the access control service is circumvented, the file may be accessed but the information is still protected by being in encrypted form. (The use of encryption may be critical on PCs that do not provide an access control service as a front line protection.)
It is very difficult to control unauthorized access to LAN traffic as it is moved through the LAN. For most LAN users, this is a realized and accepted problem. The use of encryption reduces the risk of someone capturing and reading LAN messages in transit by making the message unreadable to those who may capture it.
Only the authorized user who has the correct key can decrypt the message once it is received. A strong policy statement should dictate to users the types of information that are deemed sensitive enough to warrant encryption.
A program level policy may dictate the broad categories of information that need to be stringently protected, while a system level policy may detail the specific types of information and the specific environments that warrant encryption protection.
At whatever level the policy is dictated, the decision to use encryption should be made by the authority within the organization charged with ensuring protection of sensitive information. If a strong policy does not exist that defines what information to encrypt, then the data owner should ultimately make this decision.
Cryptography can be categorized as either secret key or public key. Secret key cryptography is based on the use of a single cryptographic key shared between two parties . The same key is used to encrypt and decrypt data. This key is kept secret by the two parties.
If encryption of sensitive but unclassified information (except Warner Amendment information) is needed, the use of the Data Encryption Standard (DES), FIPS 46-2, is required unless a waiver is granted by the head of the federal agency. The DES is a secret key algorithm used in a cryptographic system that can provide confidentiality.
FIPS 46-2 provides for the implementation of the DES algorithm in hardware, software, firmware or some combination. This is a change from 46-1 which only provided for the use of hardware implementations. For an overview of DES, information addressing the applicability of DES, and waiver procedures see [NCSL90].
Public key cryptography is a form of cryptography which make use of two keys: a public key and a private key. The two keys are related but have the property that, given the public key, it is computationally infeasible to derive the private key [FIPS 140-1].
In a public key cryptosystem, each party has its own public/private key pair. The public key can be known by anyone; the private key is kept secret. An example for providing confidentiality is as follows: two users, Scott and Jeff, wish to exchange sensitive information, and maintain the confidentiality of that information.
Scott can encrypt the information with Jeff’s public key. The confidentiality of the information is maintained since only Jeff can decrypt the information using his private key. There is currently no FIPS approved public-key encryption algorithm for confidentiality. Agencies must waive FIPS 46-2 to use a public-key encryption algorithm for confidentiality.
Public key technology, in the form of digital signatures, can also provide integrity and non-repudiation. FIPS 140-1, Security Requirements for Cryptographic Modules, should be used by agencies to specify the security requirements needed to protect the equipment that is used encryption.
This standard specifies requirements such as authentication, physical controls and proper key management for all equipment that is used for encryption. Systems that implement encryption in software have additional requirements placed on them by FIPS 140-1.
LAN servers, PCs, encryption boards, encryption modems, and all other LAN and data communication equipment that has an encryption capability should conform to the requirements of FIPS 140-1. The types of security mechanisms that could be implemented to provide the message and data confidentiality service are listed below.
- File and message encryption technology
- Protection for backup copies on tapes, diskettes, etc
- Physical protection of physical LAN medium and devices
- Use of routers that provide filtering to limit broadcasting (either by blocking or by masking message contents).